Spatial Logics
for Distributed Systems

Luca Cardelli

Microsoft Research
FWAN, 2002-07-12

Joint work with Luis Caires.
Also reflecting work with Andrew D. Gordon and Cristiano Calcagno.

Widely Distributed Systems

Concurrent systems that are spatially distributed:
e Not 1n the same box.
e Not on the same LAN.
* Not inside the same firewall.

* Not always in the same place.

They have well-defined subsystems that:
e Fail independently.
e Recover independently.
e Hold secrets, mistrust each other.
e Move around.

Spatial distribution 1s (in practice) an observable.

The New Machine

The “machine” we now write programs for, is the whole Internet.
e New instruction sets (programming models):

* Message-centric, asynchronous, often stateless.
Cannot rely on distributed consensus.

 In striking contrast to shared-memory concurrency,
and handshake-based (synchronous) concurrency.

* New type systems:

e Traditional “strong” type systems have been (finally!)
enthusiastically adopted as a foundation for security.

e But entirely new type systems are needed for regulating
communication, and to manage application-level security.

 New program logics:
e Privacy/security concerns override everything else.

e Need “location awareness’ and ‘‘resource awareness’ .

Talking About Where

Informal statements:
e Distribution: Where are things happening?
e Security: Where are things kept, and who can get there?
e Privacy: Where are things known, and where are they leaked?

We need a new way of reasoning (i.e. a new logic):
e Classical logic: Whether something 1s true.
e Intuitionistic logic: How something 1s true.
e Temporal logic: When something is true.
e Spatial logic: Where something is true.
Why logic?
e Essentially as a foundation for future type/analysis systems.

* The technical sequent calculus presentation is actually very
similar to type systems judgments.

Approach

We have looked, concretely, at specific logics for specific models:
e For trees, for graphs, for mobility, for communication + privacy.

With some common, new-ish, techniques:
e Semantically: Modal logics for structured worlds.
e Syntactically: Many-world sequent calculi.

QOutline:
 Warm-up: a logic for (finite, edge-labeled) trees.
e Spatial interpretation: a formula talks about a particular (sub-) tree.
e Composition
e Spatial interpretation: a formula talks about part of a system.

e Restriction

e Spatial interpretation: a formula talks about a private resource.

Semistructured Data

(I.e.: XML after parsing) Abiteboul, Buneman, Suciu:
“Data on the Web”

Articles

A tree (or graph), unordered (or ordered). With labels on the edges.

Invented for “flexible” data representation, for quasi-regular data like
address books and bibliographies.

Adopted by the DB community as a solution to the “database merge”
problem: merging databases from uncoordinated (web) sources.

Adopted by W3C as “web data”, then by everybody else.

Trees and their Descriptions

Trees

root edge

Syntax for Trees (P,Q)
0 root
n[P] edge
PlQ join

P = Q iff they represent the same tree.

It is the congruence induced by:
P |P, =P, | P,

P I (P,IPy) =(P,|Py)I|P,
P10 =P

PPN

join

Basic Descriptions (4,B)

0 there 1s only a root

n[A4) there is an edge n to a subtree
418 there are two joined trees

T there is anything

Formulas and Satisfaction Relation

PE F never (TL£F=F
PE AAB £ PEAAPES

PE 9= £ PEA=PESB

PE 0 £ P=0

PE SA\B £ 3P’ P’ell. P=P’ |\P’APEAAP’ESB
PE >PB £ VPell. PEA=PIPESB

PE n[4) £ 3JPell. P=n[P’)AP’ EHA

PE A@n L& p[PIEA

Basic fact: if PEZand P= Q,then Q4

Model:

* The collection of those sets of P’s that are closed under =.
(I.e., 1n this simple case, the collection of all sets of trees.)

e A boolean algebra (F A =), a quantale (|), and more (n[] @n).
e With some interesting interactions: Z>F = “%7 unsatisfiable”

Examples

“Vertical” implications about nesting
“Business Policy”

Borders| Borders|T] =
Starbucks]...] | Borders|Starbucks|T) | Books|T] | T]
Books]...] |
RGCOI’dS[] If it’s a Borders,
o then it must contain a Starbucks
] (and some books)

“Horizontal” implications about proximity

“Social Policy”
Smoker]|...] | (NonSmoker|T] I T) =
NonSmoker]|...] | (Smoker|T] 1 T)
Smoker]|...]

If there 1s a NonSmoker,
then there must be a Smoker nearby

What makes a room bad for a nonsmoker?
? E NonSmoker|T] > BadRoom
BadRoom £ (NonSmoker[T] | T) = (Smoker{T] | T)

Answer: ? = Smoker]...]

What makes a Borders legal?
? F OkBorders@Borders
OkBorders & Borders|T] =Borders|Starbucks[T] | Books[T] | T]
Answer: ? = Starbucks|...] | Books]...]
Or illegal:
? E (mOkBorders)@Borders

Answer: ? = Books]|...]

Ground Propositional Spatial Logic (for Trees)

. . iAo B u DB
Identity, Cut, and Contraction

(1d) (Cut)
t=u TkFt:A A T t:AEFA
Ct:Alu:49 A 'k A
(CL) (CR)
Ct:A t: AR A THt:At:A4 A
Ct:AEA T'Fet:A A
Propositional Connectives
(FL) (FR)
'k A
Ct:FRA 'kt F, A
(AL) (AR)
Ct:At: BEA T'Ft: A A THt:B, A
Ct:AABEA THt:AANDB, A
adjunction:
(=L) (=R)
T'Fet:A A T t:BFA Ct:AFt:B, A AnBEC
[t:9=BFA THt: 9= B, A AFB=C

Spatial Connectives

OL) OR)
t#0 t=0
Ct:0F A T'kFt:0, A
(1L) (IR)
VYuv ulvst T u:Av:BFA Juv-.ulvast TFu:A A ThHv:B, A
Ct:AIBEA T'Ft:949198B, A
L) (> R) adjunction:
Ju. TFu:49 A T tu:BFA VYu T u: A tu:B, A ANDBEC
Ct:49D>BEFA T'Ht:949> B, A A-B>C
(m[] L) (n[] R)
VYu.nlul=t T, u:AFA Ju.nful=t TFu:A A
T t:n[AF A 'k t:n[#A)], A
(@n L) (@nR) adjunction:
rnft] : AF A Chalf]: g, A n[A -G
L t:A@nk A T'kt:A@n, A A+ C@n

Calcagno-Cardelli-Gordon:
Deciding Validity in a Spatial Logic for Trees.

N.B.: neither ¢ nor ¥ contain variables. Then:
e t E S isdecidable.

 Validity is expressible in the logic, so it is also decidable whether %7 is valid
(i.e.: whether 0 E (4=F)>F).

e There is a finitary version of the proof system.
e There is a complete decision procedure for I' - A.

AN B)AOFAAB

N.B. This is not a proof, it is a proof schema showing how to

obtain a proof (a finite derivation) for each ground instance of f.

If t #0 then
20,6 AI1 B t:0Ft:ANDB, A
15, t:(AIB)AOELt:AANB, A

If 1 =0 then
42Vuyv ulv=t TLu:Av:B,t:0Ft:4, A

320,t:(AIDB),t:0Ft:4 A
220, t: (AIB)AOFL: A A

S:I(S)F,t:(%ICB)Aol-t:‘B,A
10, t: (AN B)AOFt:AADB, A

OL)
1,(AL)

(Id) since ulv=0 = u=0 = =0
42,(1L)

3.2,(nL)

Similarly

2.1,2.2,(AR)

New Logics for Concurrency

In the process of making spatial sense of n[%?], we also had to make
spatial sense of 7 | ‘3. The latter is, in fact, the harder part. So, in
retrospect, 1t makes sense to consider it on 1ts own.

An outcome is spatial logics for CCS/CSP-like process calculi. Basic
idea: take a Hennessy-Milner modal logic and add an 2 | B operator.

([Dam] Very hard to reconcile with bisimulation.)

One can go further and investigate spatial logics for restriction, with a
hiding quantifier Hx.%4 (e.g. for w-calculus). This is essential for
security/privacy specifications.

([Caires] Very hard to reconcile with bisimulation.)

We can make all that work smoothly by taking a very intensional point
of view. The logical formulas are not up-to-bisimulation: they are up-
to-structural-congruence. This requires a pretty drastic change in point
of view.

Caires-Cardelli: A Spatial Logic for Concurrency (Part LII). TACS’01, CONCUR’02.

Spatial Properties: Identifiable Subsystems

A system is often composed of 1dentifiable subsystems.
e “A message 1s sent from Alice to Bob.”

e “The protocol 1s split between two participants.”

e “The virus attacks the server.”
Such partitions of a system are (obviously) spatial properties. They
correspond to a spatial arrangement of processes in different places.

e Process calculi are very good at expressing such arrangements
operationally (c.f., chemical semantics, structural congruence).

e To the point that a process 1s often used as a specification of
another process. (We consider this as an anomaly!)

 We want something equally good at the specification, or logical,
level.

Spatial Properties: Restricted Resources

A system often restricts the use of certain resources to certain
subsystems.

e “A shared private key n 1s established between two processes.”

e “A fresh nonce n 1s generated locally and transmitted.”

e “The applet runs in a secret sandbox.”
Something is hidden/secret/private if 1t 1s present only 1in a limited
subsystem. So these are spatial properties too.

 [If something is secret, by assumption it cannot be known. Still,
we want to talk about it in specifications.

* We can talk about a secret name only by using a fresh name for it
(we cannot assume the secret name matches any known name).

e So freshness will be an important concept. Logics of freshness are
VEry new.

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, ...

agerV\firewall

X F 1

(agent|T] | firewall[T] | T)

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent 1s inside the firewall.

firewall

agent i
X

(agent[T] | firewall[T] | T) A O(firewall[agent|[T] | T] 1 T)

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent 1s inside the firewall.
And this works 1n presence of any (reasonable) attacker.

firewall — very J

attacker

intensional

i (unspecified)

not intensionalj

Attack > ((agent[T] | firewall[T] | T) A O(firewalllagent[T] 1 T] 1 T))

Shocking things one may say

Single-threaded (or void):
—(—0 | —0)

Output: outputs a message m on n (and 1s/does nothing else):

n{m)

In presence of a message m on n, sends a message n on m and stops:

n{m) > »m(n)

Contains a name free:
©n é —|n®T

P FE —n®T iff =~ P = (vn)P’ iff nefn(P)

Has a shared secret:
Hx. ©x | ©Ox

Logical Formulas for t-Worlds

A Bed:=
K
AND
D
ANB
n®A
n{m)
»HA
Vx4
Wx.54
VXA
X

(ne>m)p

Terms (n,m,p € N)

Formulas
false Basic observatioa
conjunction =B implication
void
composition “>B guarantee
revelation %0n hiding
message
next 7/ previous
universal name quantifier

fresh name quantifier
propositional quantifier Used to define a “hiding
propositional variables quantifier” for (va)P

Used to define u-calculus style
least and greatest fixpoints via
F-algebra style encodings

name var (x € <)
name transposition

A Motivating Example

Client & Hx. (Protocol(x) | Request(x))

A Client generates a secret x and then engages in a Protocol(x) (e.g. simply pub(x)) in
order to perform a request Reguest(x) (e.g. some communication on x) which is
uniquely associated with the secret x.

Server £ Wx.(Protocol(x) > <&(Handler(x) | Server))

A (recursive) Server, in presence of an instance of Protocol for a fresh x, produces a
Handler(x) uniquely associated with the secret x, and is ready again as a Server.

Client | Server = <(Server | Hx. (Request(x) | Handler(x)))

When a client interacts with a server, the result is eventually again a server, together
with a private handler for the client request.

We can show this implication in the logic, without looking at any implementation of
Client and Server.

Note the subtle distinction between having/creating a secret (Hx) and obtaining/using a

fresh secret (//1x). The quantifier Hx must match a restriction (vn), while the quantifier
I/Ix must match a fresh name that may be generated by a restriction.

Sequents

Many-world sequents: ()T A

Validity: if all the constraints S, and all the assumptions I'; are satisfied,
then one of the conclusions Aj 1s satisfied

(Spatial) equivalence constraints (Nominal) distinction constraints
(denote structural congruence) (denote name distinctions)

(ow’=v’ . u”—=v” ..nffm..n#X...)u:A..F..v:B..

(Temporal) reduction constraints Formulas (denote properties) ’

(denote process reduction)

Indexes (denote processes) ’

Constraint Resolution:

SF u=v S u—v S F n#m S n#X

Recipe for Rules

Left rules, right rules. Operate mainly on the I - A part.
* When operating on constraints (S):
e Going up: One adds, the other checks constraints.
e Going down: One removes, the other assumes constraints.

e They form cut elimination pairs.

World rules (optional). Operate on the (S) part only.

 Embody inversion lemmas: deep properties of process calcul.
(In temporal logic, they embody properties such as reflexivity and transitivity of the
reachibility relation.)

e Going up: add deducible constraints.
e Going down: remove redundant constraints.

e Commute easily with cuts.

Composition

A1B the system is made of two distinct components satisfying 7 and 5.
Right Rule 4@]
(IR)
S THFv:AA (S)TFt:B,A Sk u=vit
(I T+u:F1B, A i[check]

constraint

(1L) X,Y not free in the conclusion

[remove (S, u=xXI1TI, X: %, Y:BFA

constraint S\LLu:AIBFA

World Rules

(S10) (SIil)

(S, u=0)I'A SF ulv=0 eee Sk ulv=tlw
(I'FA (HI'EA

Suppose ulv=0 = u=0. Then, if we can
already deduce that ulv=0, we can
eliminate a redundant assumption u = 0.

Restriction

n®%A The system has a hidden resource, that we shall call n,
and an interior satisfying %.

We say that we “reveal” the hidden resource as n (if possible).

Right Rule
(®R)
(S)T'Ft:4, A SFu=(vn)t
(S)T'Fu:n®A, A

check that u has the
form (vn)t, for that

precise n
(hence n¢fn(u)) v
Left Rule
(® L) 7 not free in the conclusion
assuming néfn(u)... (S, u=(vm) NI, V:AEA
? (ST, u:n®AE A
World Rules
Svo0 Svl) Svv)
(S, u=0)I'FA SF (vR)u=0 v SEVR)u=tly ... Sk (vR)uz=(vm)v

($IT'FA (SHHTFA ($HT'FA

Freshness and Hiding

V. D for all/some fresh name n denoted by x, the system satisfies Z{x<—n}.
(The name n is fresh both in the system and in 9)

HxZ 2 WNx. x®F the system has a hidden resource x that we can reveal as
any fresh n, and has an interior satisfying $4{x<—n}.

Hx.54 is the logical construct that corresponds to restriction:

Derived Right Rule

(HR) .
(ST v:B{xen},A Stu=(va)y St n#Hx.F check that n is fresh éo[r
()T F u:HxHA A all names in u and

Ex.: Hx.p(x) is a system that outputs a fresh name on channel p.

Implementable as u = (vn)p(n).

Propositional Rules

Identity, Cut, and Contraction; (Exchange is implicit)

(Id)
SFuzy SFA=DB
ST u:4Fv:B, A

(CL)
ST, u:4,u:AFA
ST, u:49FA

L/R Rules:

(AL)

ST u:4u:BFA
ST, u:AABEFA

(=L)
SOTrFu:AA ST u:BFA

(Cut)
S TFu:AA ST, u:AFA

($HT'FA

(CR)
S TrFu:A u:4, A

(STFu:%4, A

(AR)
STFu:AA S TFu:3B,A

ST u:A=BEA
(FL)

($HL,u:FFA

(STFu:AASB, A

(=R)

ST u:49Fu:B, A

S ThFu:A=3, A

(FR)
(SYI'FA

(SHT'Fu:FA

Spatial Rules

L/R Rules:

OL)
(S, u=0)I'+ A
(HILu:0FA

(1L) X, not free in the conclusion
(S, u= XN, X:A ¥:BFA
)L u:A41BEA

(> L)
(SITHEt:AA (ST, tlu:BFA

(OR)
Sk u=0

(HT'Fu:0,A

(IR)
(SYTFv:AA (S)TFt:B,A SFu=vit
STFu:A13, A

(> R) X not free in the conclusion

ST, X:AFv:B,A SFv=Xlu

ST u:490BFA

(® L) 7 not free in the conclusion
(S, u=(va)N) T, V:AF A
(ST, u:n®AE A

OL)
(S)T, (vi)u : A+ A
(ST, u:490nkF A

(S)TFu:4A> B, A

(®R)
(S)THt:49, A SFu=(va)t
(S)TFu:n®A, A

(OR)
(SYTHt:A A SFt=(va)u
()T Fu:AOCx, A

S Rules:

(S10) S11) X,7, U,V not free in the conclusion
(S, u=0)I'A Sk ulv=0 (S, u=X17, v=UVIV, t=XI1U,w=YI1V)TFA Stulv=tlw
(S)TFHA (S)TFHA
Svo0 (Sv1) X,Ynot free in the conclusion
(S, u=0)I'A SEnu=0 (S, u=X17, (vi)X=t, (vn)¥=v)I'FA S (vR)u=tly
(SHIrFA (S)TFA

(SV V) X not free in the conclusion
(S, u=(nem)v)I'-A (S, u=(vim) X, v=(vi)X)T'F A SF (vr)u=(vm)v
()I'EA

AN B)AOFAAB

6.2 (S, u=X1%u=0, X0, X:A4 V:Bru:4 A
52(S, u=X1%uz=0T, X:A V:Bru:4 A
42 u=XINC, X4 YV: B u:0Fu:4 A
329 u:(AI1B),u:0Fu:4,A

22T u: (A1 B)AOFu:A A

;:I(S)F,u:(%ICB)AOI-u:CB,A
1O u:(A@IB)AOFuU:AANB, A

(Id) since u=Xx

6.2, (S 10) since X19=0
52,0L)

42, (I1L)

32,(AL)

Similarly

2.1,22,(AR)

Temporal Rules

L/R Rules:
(» L) X not free in the conclusion »R)
(S, u—X)[LX:A9FA STEv:49 A SkFu—v
()T, u:»AEA (YT Fu:»A A
(«L) («R) X not free in the conclusion
SYT,v:A4FA SkEv—u (S, X=u)'X:4, A
()T, u: A« A ()T Fu:%A« A
S Rules:
S0—) (S v —) Xnot free in the conclusion
Sk O0—u (S, u—=XxX,v=(vn) X)T'FA SF (vr)u—v
(SYTFA (S)TFHA

No rule (S1—).

Quantification Rules

L/R Rules:

(VL) (¥ R) y not free in the conclusion
()T, u:A{x<=n} A (S)Thu:%A{xy}, A
(ST, u:Vx4E A (S)TFu:VxHA A
(V2L) (V2 R) Y not free in the conclusion
()T, u: A{X<B}F A (S)TFu:AX<Y}, A

(ST, u: VXHAE A (S)TFu:VXA A

Freshness Rules

L/R Rules:
(ML) cf.: (VL)
()T, u:A{x=n}FA Stu=(vn)v St n#x.A ()T, u:A{x<n} A
(ST, u: MxAF A (ST, u:Vx4E A
(VM R) cf.: @R
(S)T'Fu:Ax<n},A Stu=(va)yv St n#x.A (S)YT'Fu:A{x<n}, A
(S)TFu: Nx4 A (S)TFu:3IxA A
S Rules: Local transposition:
(W) % x not free in the conclusion, u or N (1)
(S, x#N, u=(vx)")T'FA ()T, (men)u : {meon}AEA St mn# fpv(A)
(SST'FA (ST u:AFA

Bottom-up reading: For any process u and set N

A main theorem from Part 1.

(of hames free in some formula) ther§ iIsaname ({;¢sn}.F applies mesn to F, possibly attaching explicit
x fresh in u and N. Cf. GP’s Fresh axiom. transpositions to the free name variables of $7.)

Top-down reading: eliminate unused This is the basis for the equivariance property of the logic.

freshness assumptions

Examples of Derivable Properties

HxA & Wx. x®A This is the proper “hiding quantifier” s.t. u : & = (vx)u : Hx. A

Scope Extrusions:

@1) (S) T, u: x®A | x®B = u : x®(A | x®B), A

M (ST, u: Mk ATV B - u : Ux.(A | B), A

Hi®) (), u: (HxA) | (Hx.B) 4+ u: Hx. (A1 x®B), A
H1 (ST u: He AN VBl u: Hx. (A1 B), A

Input: x(1).A & Vy. x(y) > »A

Recursive nonce generators:

Ne & vX. (Hx. ne(x) 1 X

(S) T, u: Nelne(y). Ay} b u:»DeclHz Az}), A
(YT, u:NelDNe b u: DNe, A

(two nonce generators will not accidentally produce the same names)

/1-Cut Elimination

Equivariance is essential in cut-elimination.

T, T, Original Proof Tree
uz(vn)v n# WNzA uz(vm)t m# NzA
(S) I'u: %{zen}, A (S) F, u. %{z@m} FA main problem.: may have usa
(S) I Fu: VIZ.%, A R S)I',u: MZ% FAwL) dilieienan iy in i Dranches
(S)T'F A (Cut)
(size-preserving eguivariance of) Re it d Bieotidi .
T, T,
()T, u:A{ze=m} F A (YT, u:A{z<=m} - A
(S)T'F A (Cut)

Main difficulty: ai-conversion of derivations. Solution: equivariance transformation
of (S)I'F u : A{z<—n}, A derivation to (S) I, u : “4{z<—m} F A derivation, possible
because of assumptions u = (vn)v, n # Nz.4, u=(vm)t, m # Nz.4.

(1) just commutes with (Cut), so it is not a problem

Conclusions

We set out to find logics for describing properties of distributed systems.
(After trying equational reasoning, traces, etc.)

Spatial logics exhibit the trade-offs of temporal logics: compact notation for implicit
state, nice proof systems, reduced expressiveness.

Along the way, we discovered many other applications for the basic techniques. We
believe there is something intriguing and new in the approach and its formalization.

With respect to traditional logics of concurrency, we are very intensional.
But another word for it is precise.

With Caires, we now have a logic and sequent calculus (with cut-elimination)
for m-calculus, where we can express privacy properties.

Related work:
e With Calcagno and Godon: Model checking and validity checking.
e Sangiorgi: Spacetime bisimulation.
e (O’Hearn and Pym: Logics for heaps.

http://www.luca.demon.co.uk/SpatialLogics.html

EXTRA

Equivariance

(EVR)
(SYTFu:949,A St (vm)t=u=(va)y St mn#fpv(A)
(S)THu: {men}-A A

32T Fu:4 A m,n #, fov(%) (Hyp)

22 (S)TF (men)u: {me>n}.A, A 32, (tR)

31 S+ (me=>n)u=u (vm)t=u= (vn)v (Hyp) (Swap Erase)

21 (S) I, (me=n)u: {men}-AkL u: {me=n}.A A 3.1, (Id)

1(S)T'tu: {men}-%4 A 2.1, 2.2, (Cut)
(tR)

(SYThu:4,A Stmn#fpv(A)
(S)T'F (me=>n)u : {me>n}.A, A

22(S)TFu:94, A m,n #, fov(%) (Hyp)
31 (ST, (me=n)u: {me>n}- AL (m=n)u: {me=>n}-%A, A 3.1, (Id)
21 (ST, u:AF (me=>n)u : {m<n}.4A, A 3.1, mn # fpw() (Hyp), (t)

1(S)T'F (me>n)u: {me>n}.A, A 2.1, 2.2, (Cut)

Combining freshness assumptions:

(W Aux) %Z not free in the conclusion
(S, u=(vn)%, v=(va)Z)I'F A This can be useful before applying (),

(S, ul () Y I FA which works on a single (v n) constraint.
, ulv=(vn)t

(S, u=(vn), v=(vm)Z) '+ A (Hyp)
(S, ulv=(vn)t, t=Y1Z u=(vn)¥, v=(vn)2)I'F A (W S)
(S, ulv=(vr)t) '+ A %Z gone (Sv1)

®-Cut Elimination

(® L) 7 not free in the conclusion (® RCF)
(S, u=(va))T, V: A+ A (S)THt:9,u:n®A, A S uz=(va)t
(ST, u:n®AE A ()T Fu: n®A, A
Original Proof Tree
T, T,
(S)T'Ht:4, u:n®%4, A SF u=(vn)t (S, u=(va))T, v: A+ A
()T F u: n®A, A (®RCF) (ST, u:n®AEF A @L)
(S) I’ F A (Cut n®%)

(Cut n®%) applied to a smaller tree
(Cut %) applied to a smaller formula

T,

Restructured Proof Tree

T, (S, u=(va)V)T, V: A+ A
(SYTHt:4 u:n®4, A (ST, u:n®AEF A T,-inst(t/Y)
(SYTEt:94, A (Cutn®g) (ST, t:AFA

(S) I'FA (Cut %)

|-Cut Elimination

(1L) X, not free in the conclusion (IRCF)
(S u=XINT, XA ¥:BLA STHEv: A u:AlIBA (S)THt:B,u:%41B,A
ST, u:491BFA S u=vlt
(S TFu:413, A
Original Proof Tree
T, T, T

(S)Tkv:94, ()T Ft: B, SFu=vlit (S, uz=XINL, XA, 7. BEFA
u:AB, A u:AB, A

(SYTFu:4A1B, A(RCF) (ST, u: 491 BFAQL)
(S)T'F A (cutz1)

Restructured Proof Tree

T, ... TC.-1nst Tt,-weakn Tt.-weakn
(S)Fl_t:CB, .g (B ,(B .% .(B .g
u: AB, A HLu:AIBEA (S, t:B,v:AFA (S),t:BElv:94 AcCuz B
(SYTHt:B, A ccutz ()T, t:BE A (cutw

(S)T'F A (Cutd)

Example: “Shared Secret” Postcondition

Consider a situation where “a hidden name x 1s shared by two locations
n and m, and 1s not known outside those locations™.

Hx.(n[©x] | m[©x])

What can we do with such a spec? We can fully expand the definitions
and work 1t out 1n the process calculus:

e PE Hx.(n[Ox] | m[©x])

& dreA. réfn(P)u{n.m} A AR’,R”ell. P = (vi)(n[R’] | m[R”])
ATEM(R’) A refn(R”)

* E.g.: take P = (vp) (n[p[1] | m[p[1D.

Or we can work logically at the formula level, within a proof system.

Ex: Immovable Object vs

. Irresistible Force

Im £ T o(obj()| T)
T > 0%—(obj{) | T)

>

Ir

Im|Ir - (T>OGbI{)IT)IT
- o(ebj{) | T)
- <o(ebj{) | T)
Im\Ir - TI(TD> OO—(ebj{) | T))
F 0l—(ebj() | T)
- —on(ebj{) | T)

Hence: Im|Ir+F

AT
(A>DB) | A+ DB
A+ OA

AT
O+ oA
0—AF 04

AAN—-AFF

Rules for Messages

L/R Rules:
(n{m) L) (n(m) R)
(S, uznim)) ' A S F u=n(m)
(I, u:nimk A (ST u:nim), A
S Rules:
(S 0 n{m)) (S n(m) nimy))

SEO=n(m) (S, m=m’, n=n")THEA St nim)=n’(m’)

(S)T'FA (SYTHA

(S 1 n(my))

(S, u=0, v=nim)) T A (S, v=0, u=nim)) T A St ulv=n(m)

(SYTEA

(S v n(m))

(S, u= n(m)) 'FA n#p m#p Sk (Vp)u =n({m)

(SYT"F A

(S n(m) —)
S F n{m)—u

($HHITFA

